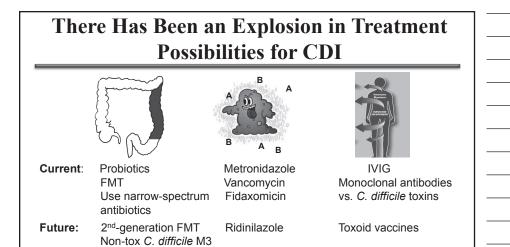
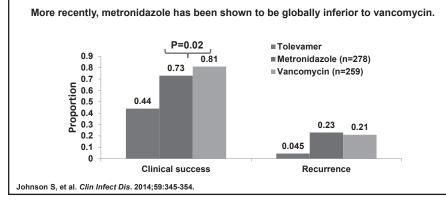
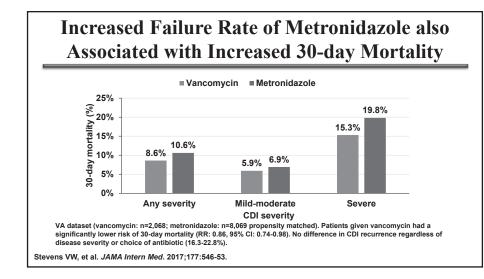

Latest Approaches in Treating *C. difficile Infection* and Preventing Recurrence: The Guidelines Have Arrived!


Kevin W. Garey, PharmD, MS, FASHP

Chair, Department of Pharmacy Practice and Translational Research Professor of Pharmacy Practice College of Pharmacy University of Houston Houston, TX




Episode	Clinical Signs	Severity	Recommended agent	Dosing Regimen	Strength of Recommendatio
Initial	WBC <15,000 and SrCr <1.5 × premorbid level	Mild or moderate	Metronidazole	500 mg PO three times daily 10–14 days	A-I
Initial	WBC ≥15,000 or SrCr ≥1.5 × premorbid level	Severe	Vancomycin	125 mg PO four times daily 10–14 days	B-I
Initial	Hypotension, shock, ileus, megacolon	Severe, complicated	Vancomycin + metronidazole IV	Vancomycin: 500 mg PO or NG 4× daily + Metronidazole: 500 mg IV q8h. For ileus, consider adding rectal instillation of vancomycin	C-III
Second (1 st recurrence)			Same as initial	Same as initial	A-II
Third (2 nd recurrence)			Vancomycin	PO tapered and/or pulsed	B-III

Cohen SH, et al. Infect Control Hosp Epidemiol. 2010;31:431-55.

Ecobiotics


Summary of Metronidazole vs. Vancomycin Clinical Studies

							Metro	Vanco	Clinical failure		Recu	rence
Study	Year	Location	n	Single center	Blinded	Randomized	dose	dose	metro	vanco	metro	vanco
Teasley, 1983	82-83	MN	101	yes	no	yes	250 mg QID	500 mg qid	2 of 37 (5.4%)	0 of 45 (0%)	2 of 37 (5.4%)	6 of 45 (13%)
Wenisch, 1996	93-95	Austria	62	yes	no	yes	500 mg TID	500 mg tid	2 of 31 (6%)	2 of 31 (6%)	5 of 31 (16%)	5 of 31 (16%)
Musher, 2006	02-04	USA (Houston)	34	no	yes	yes	250 mg QID	125 mg qid	6 of 34 (17%)	N/A	9 of 28 (32%)	N/A
Zar, 2007	94-02	Chicago	150	Yes	yes	yes	250 mg QID	125 mg qid	13 of 79 (16%)	2 of 71 (3%)	9 of 66 (14%)	5 of 69 (7%)
Johnson, 2013	05-07	World	552	no	yes	yes	375 mg QID	125 mg qid	76 of 278 (27%)	49 of 259 (19%)	48 of 202 (23%)	43 of 210 (21%)

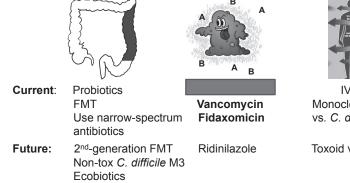
There May Have Been MIC Creep With Metronidazole Over the Decades

				Metronidazole			
Author	Location Time period		Isolates	MIC ₅₀	MIC ₉₀	Range	
All strains							
Hecht et al	Various	1983-2004	110	0.125	0.25	0.025-0.5	
Edlund et al	Sweden	1998	50	0.125	0.25	0.125-0.25	
Betriu et al	Spain	2001	55	0.5	1	≤0.06–1	
Citron et al	USA	2003	18	0.5	1	0.25-1	
Finegold et al	USA (CA)	2003	72	0.5	1	0.25-2	
Karlowsky et al	Canada (Manitoba)	2007	208	0.5	1	0.25–4	
Debast et al	Europe	2008	398	0.25	0.5	<0.06-2	
Reigadas et al	Spain	2013	100	0.25	0.5	0.06-1	
Snydman et al	USA	2011-12	925	1	2	<0.06-4	
BI/027/NAP1 strains		•					
Citron et al	USA	2004-2005		NR	2	0.5-2	
Debast et al	Europe	2008		0.5	1	0.5-1	
Snydman et al	USA	2011-12		2	2	<0.06-4	

Shah D, et al. Expert Rev Anti Infect Ther. 2010;8:555-64.

Bottom Line: This May Simply be a PK/PD Problem

- Mean concentrations of metronidazole in stool: <0.25–9.5 $\mu g/g$
- MIC₅₀: 1 μg/mL MIC₉₀: 2 μg/mL
 May be higher
- A poor response rate to metronidazole should be expected given these numbers!

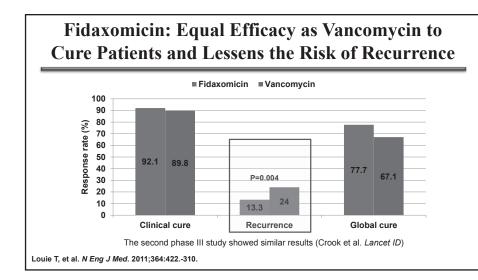

Bolton RP, Culshaw MA. Gut. 1986;27:1169-72.

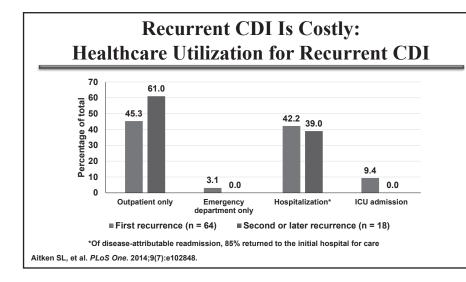
Recommendation for Initial Treatment of CDI in Adults

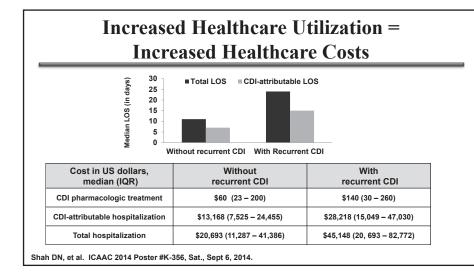
Clinical definition	Supportive clinical data	Recommended treatment
Initial episode, non- severe	WBC <15,000 cells/mL and serum creatinine <1.5 mg/dL	VAN 125 mg given four times daily for 10 days, or FDX 200 mg given twice daily for 10 days Alternative if above agents are not available: metronidazole 500 mg three times daily by mouth for 10 days
Initial episode, severe	WBC ≥15,000 cells/mL or a serum creatinine >1.5 mg/dL	VAN 125 mg given four times daily for 10 days, or FDX 200 mg given twice daily for 10 days
Initial episode, fulminant	Hypotension or shock, ileus, megacolon	VAN 500 mg given four times daily by mouth or nasogastric tube. If ileus, consider adding rectal instillation of VAN. Add intravenous metronidazole 500 mg every 8 hrs if ileus present

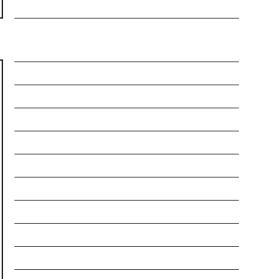
McDonald LC, et al. Clin Infect Dis. 2018;66(7):e1-e48.

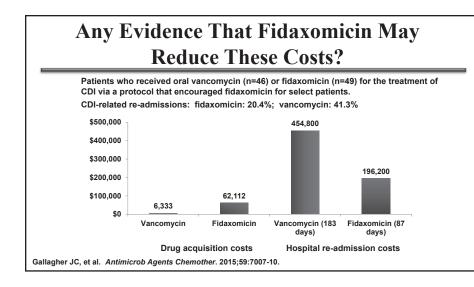
Explosion in Treatment Possibilities for CDI Minus 1

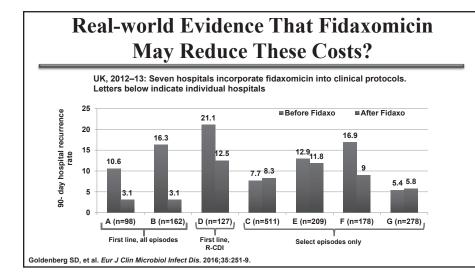


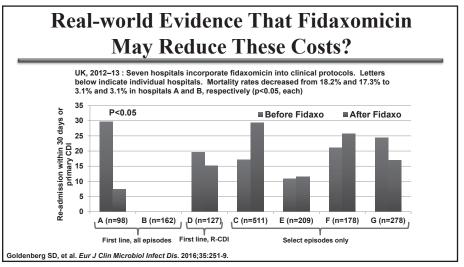


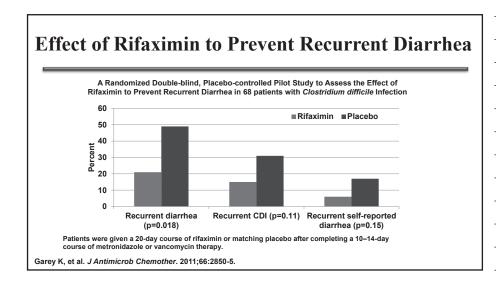

Monoclonal antibodies vs. *C. difficile* toxins

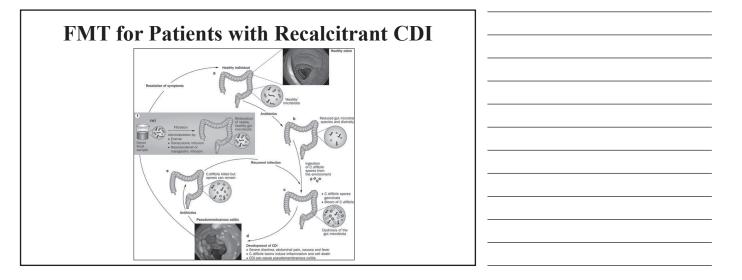

Toxoid vaccines







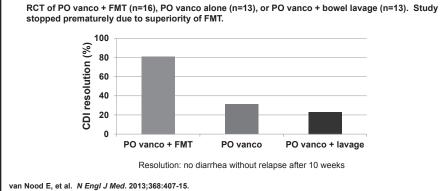




Recommendation for Recurrence of CDI in Adults

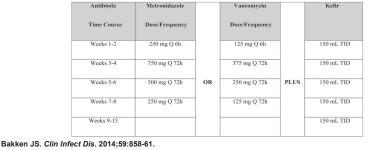
Clinical definition Supportive clinical data		Recommended treatment
First recurrence		 VAN SD if metronidazole was used for the first episode OR Prolonged tapered and pulsed VAN if VAN SD was used for first regimen OR FDX SD if VAN was used for the initial episode
Second or subsequent recurrences		 VAN in a tapered or pulsed regimen OR VAN SD followed by rifaximin 400 mg three times daily for 20 days OR FDX SD OR Fecal microbiota transplantation

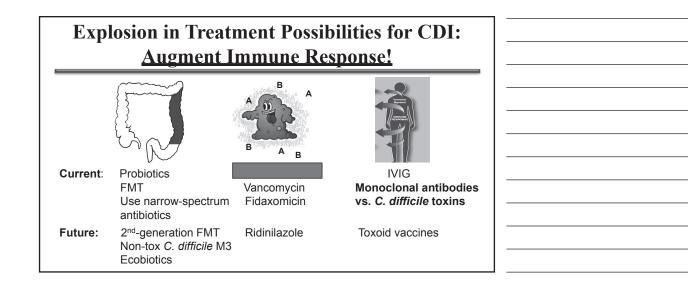
McDonald LC, et al. Clin Infect Dis. 2018;66(7):e1-e48.

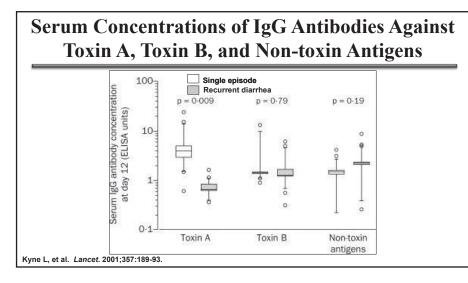

Recurrent C. difficile Colitis

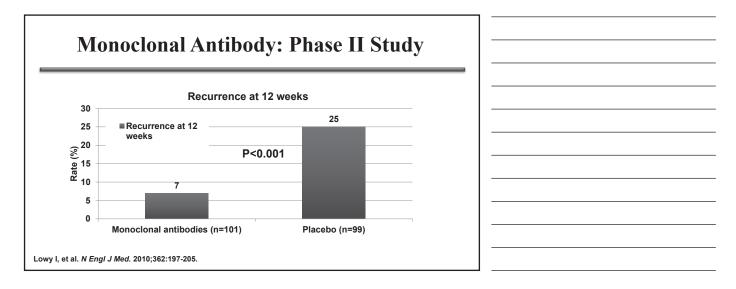
Case series involving 18 patients treated with donor stool administered via a nasogastric tube

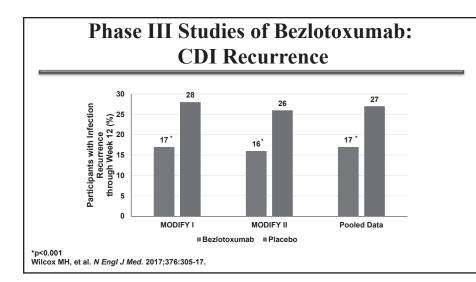
	Before stool transplant	After stool transplant
Deaths	N/A	2 (unrelated)
# of Recurrence	64 (Range 2–7)	1

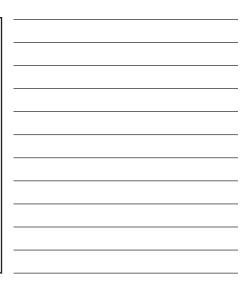

Aas J, et al. Clin Infect Dis. 2003;36:580-5.

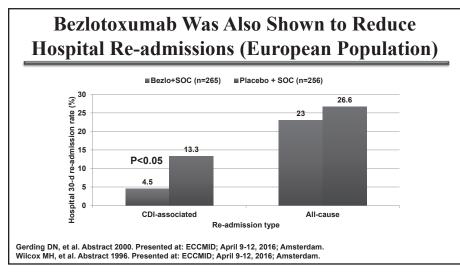


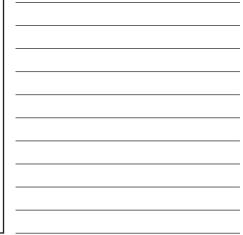

Protocol Utilizing a Staggered and Tapered Antibiotic Treatment Regimen for the Treatment of Recurrent CDI that has Failed to Respond to Standard Antibiotic Therapy

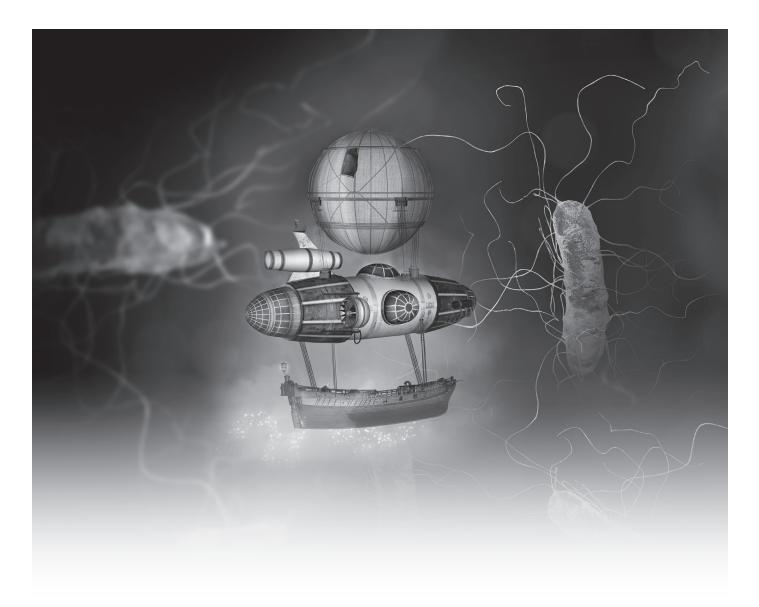

25 patients with recurrent CDI that were not able to perform FMT. Twenty-one of the 25 patients (84%) remained free of diarrhea during the following 9 months. The 4 patients who relapsed permanently resolved their diarrhea after a conventional 2-week course of oral vancomycin 125 mg 4 times daily followed by a 2-week course of rifaximin 200 mg twice daily. All 4 patients remained symptom-free at 12 months of follow-up.







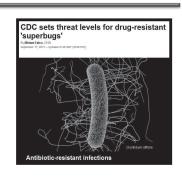




Final Conclusions

- · Limit (eliminate) use of metronidazole
 - Pick a place for fidaxomicin
 - Be prepared for more competition in the narrow-spectrum anti-*C*. *difficile* world
- Immune response
 - Bezlotoxumab is here (and can be used in outpatient infusion centers)
- Complete the triad: Correct dysbiosis

MDR Gram-negative Bacteria: Practical Guidance on the Pathogen-specific Use of New Antimicrobials

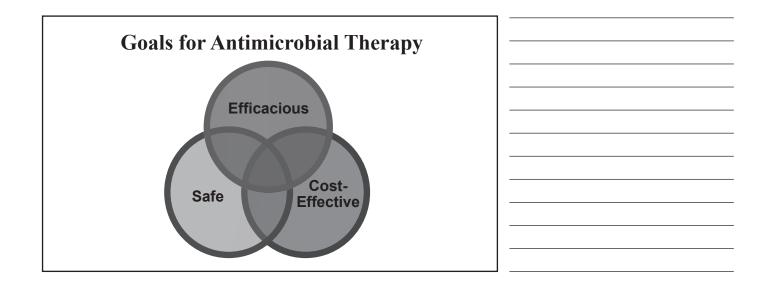

George H. Karam, MD

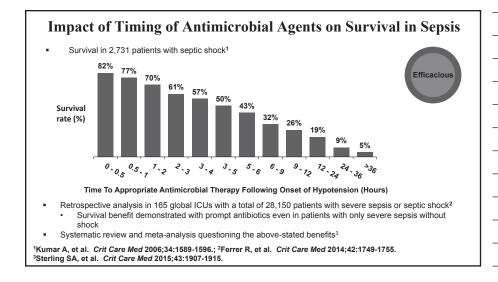
Paula Garvey Manship Professor of Medicine Department of Medicine Louisiana State University School of Medicine in New Orleans Baton Rouge Branch Campus Baton Rouge, LA

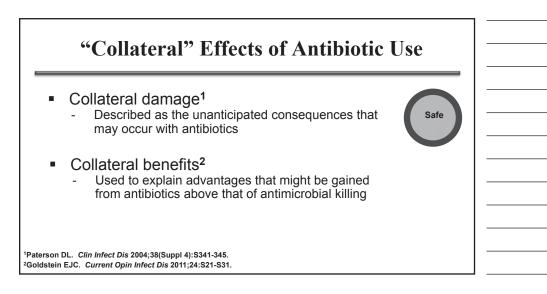
CDC Antibiotic Resistance Threats in the US

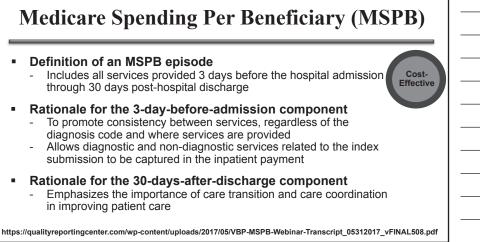
CDC characterization of superbugs by threat levels

- Urgent
- Clostridium difficile
- Carbapenem-resistant Enterobacteriaceae (CRE)
 Drug-resistant Neisseria gonorrhoeae
- Serious
- Concerning

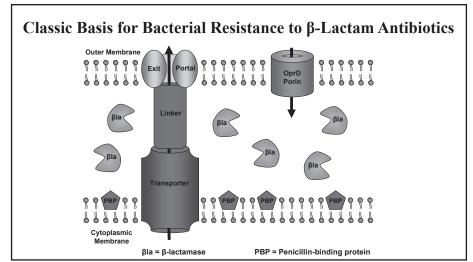


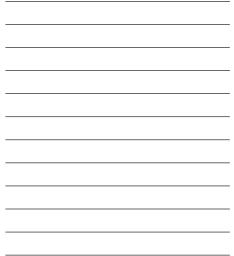

Centers for Disease Control. Available at: http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.

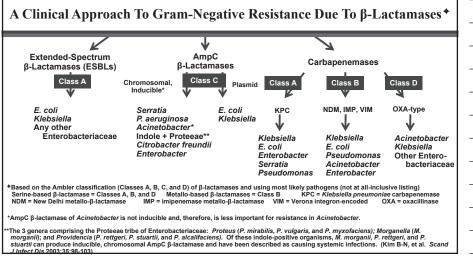

WHO Antibiotic Resistant "Priority Pathogens" with "Critical" Need for R&D

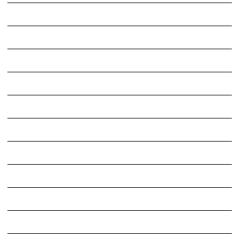

- CR Acinetobacter baumannii
- CR Pseudomonas aeruginosa
- CR, ESBL-producing Enterobacteriaceae

WHO, World Health Organization R & D, Research and Development CR, carbapenem-resistant Tacconelli E, et al. *Lancet Infect Dis*. 2018;18:318-27.



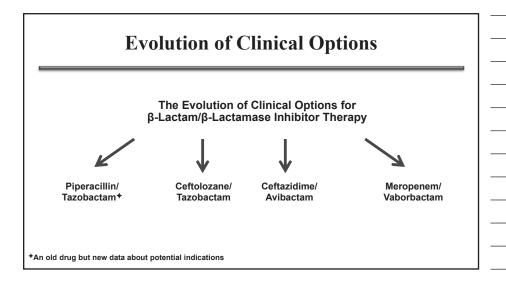


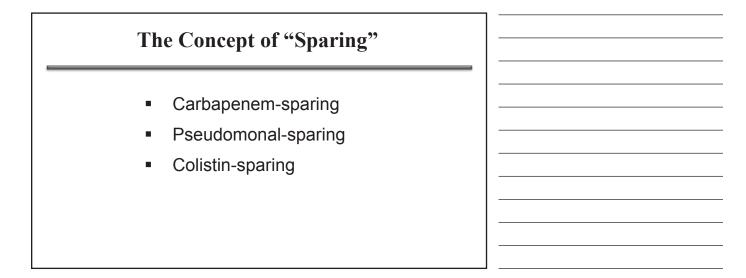



Mechanisms of Resistance in Antibiotic Classes **Used To Treat Resistant Pathogens**

Efflu	Altered Binding Sites	Enzymatic Destruction	Permeability⁵	
· · /	Penicillin-binding proteins	β-lactamases	✓ (including porin channel closure with carbapenems)	β-lactams ¹
nerase IV plasmid-	 Alterations in DNA gyra and Topoisomerase IV Protection by plasmid- mediated qnr protein 	Described, but not a classic resistance mechanism for quinolones ⁷	1	Fluoroquinolones ²
mal subunit 🗸	30S ribosomal subun	Adenolating & acetylating enzymes	J	Aminoglycosides ³
mal subunit 🖌	70S ribosomal subun	Modification enzymes	1	Tetracyclines ⁴
	70S rib	-		Tetracyclines ⁴ lapted from Karam G, et al. Cr. acoby G. N Engl J Med. 2005;

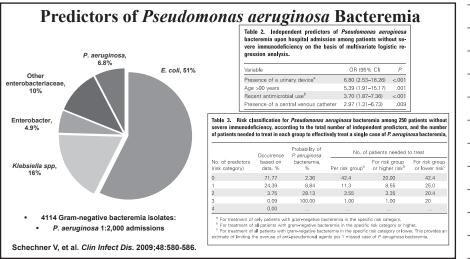
¹Jacoby G. N. Engr J. Med. 2005;352:350-391.
 ¹Mingeot-Leclercq MP, et al. Antimicrob Agents Chemother. 1999;43:727-37.
 ⁵Delcour A. Biochim Biophys Acta. 2009;1794:808–816.
 ⁷Jacoby GA. Clin Infect Dis. 2005;41:S120-S126.

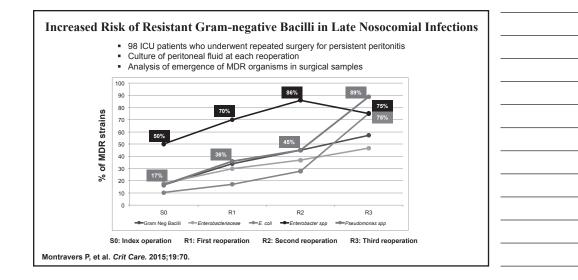

⁴Grossman TH, et al. Antimicrob Agents Chemother. 2012;56:2559-64. ⁶Poole K. J Antimicrob Chemother. 2005;56:20–51.



Contemporary Issues Related to the Mechanisms By Which Clinically Important Resistance Occurs in Patients

- Acquisition of pathogens possessing resistance determinants
 - Travel
 - J Antimicrob Chemother. 2013;9:2144-2153.
 - Food - Clin Infect Dis. 2015;61:892-899.
 - Plasmid-mediated genetics
 - Lancet Infect Dis. 2016;16:161-168.
 - Transmissibility factors
 - Clin Infect Dis. 2018;66:489-493.
- Selection of resistant strains by antibiotic pressure
- Inadequate infection control

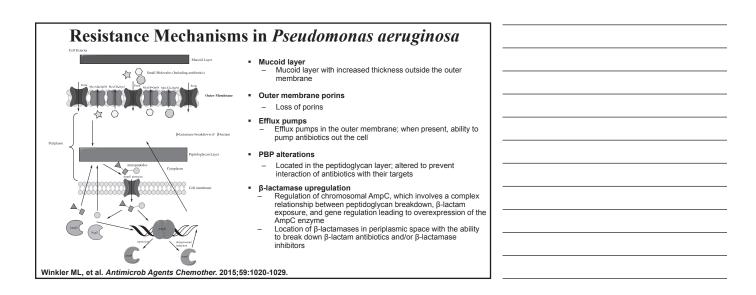



Potential Role for BLBLIs in Infections by ESBL-producing Organisms

- Multinational, retrospective cohort study by Gutiérrez-Gutiérrez et al showing that BLBLIs, if active *in vitro*, appear to be as effective as carbapenems for empirical and targeted bloodstream infections caused by ESBL-producing Enterobacteriaceae, regardless of source and specific species, if used at appropriate doses
 Antimicrob Agents Chemother: 2016;60:4159–4169.
- Suggestion by Bassetti et al that the best alternative to carbapenems for the treatment of ESBL infections may be by BLBLIs, mainly piperacillin–tazobactam, if the MIC of the ESBLproducing pathogen is ≤16/4 µg/mL
 Curr Opin Infect Dis. 2016;29:583–594.
- Perspective paper suggesting potential roles for β-lactamase inhibitor combinations in treatment of ESBL infections (*Lancet Infect Dis.* 2015;15:475-485.)
 - Infections of the urinary tract
 - Non-urinary infections with isolates having low MICs
 - Clinical infections in which source control has been achieved

BLBLIs, β-lactam/β-lactamase inhibitors BSIs, bloodstream infections

STUDY PROTOCOL Open Access Meropenem versus piperacillin-tazobactam for definitive treatment of bloodstream infections due to ceftriaxone non-susceptible Escherichia coli and Klebsiella spp (the MERINO trial): study protocol for a randomised controlled trial Patrick NA Hards", Anton Y Peleg", an Itedel", Paul R Ingram ⁴⁵ , Spiros Miyakk ⁶ , Andrew J Stewardson ⁷ , Benjamin A Rogers ⁶ , Emma 5 McBryde ⁹ , Jason A Roberts ¹⁰ , Jeff Lipman ¹⁰ , Eugene Athan ¹¹ , Sanjey K Paul ¹² , Peter Baker ¹⁰ , Tiffary Harris-Brown ¹ and David L Paterson ¹
Benjamin A Rogers ⁹ , Emma S McRyde ⁹ , Jason A Roberts ¹⁰ , Jeff Lipman ¹⁰ , Eugene Athan ¹¹ , Sanjoy K Paul ¹² , Peter Baker ¹³ , Tiffany Harris-Brown ¹ and David L Paterson ¹



Multidrug-Resistant *P. aeruginosa* Linked to Overuse of Traditional Antibiotics with Antipseudomonal Activity

- In a 2-year case-control study of patients (N=2613) admitted to 3 ICUs in a large teaching hospital in Paris, France
 - Prolonged receipt of antibiotics with specific antipseudomonal activity (most notably ciprofloxacin) associated with the emergence of multidrug-resistant *P. aeruginosa*
 - Interpretation of the data: "if treatment with an antibiotic active against Gram-negative bacteria is needed, agents with little antipseudomonal activity should be preferred over those with specific antipseudomonal activity to limit the emergence of MDRPA (multidrug-resistant *P. aeruginosa*)."

Paramythiotou E, et al. Clin Infect Dis. 2004;38:670-677.

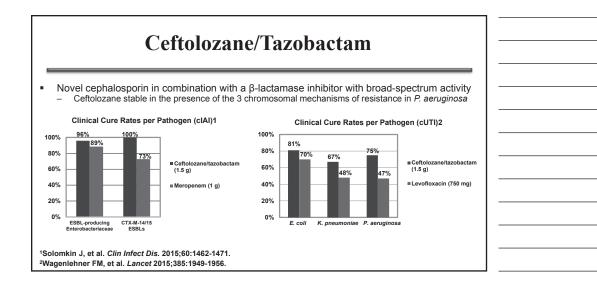
Resistance in Pseudomonas aeruginosa

 Resistance mechanisms regulated by genetic operons on the chromosome of P. aeruginosa

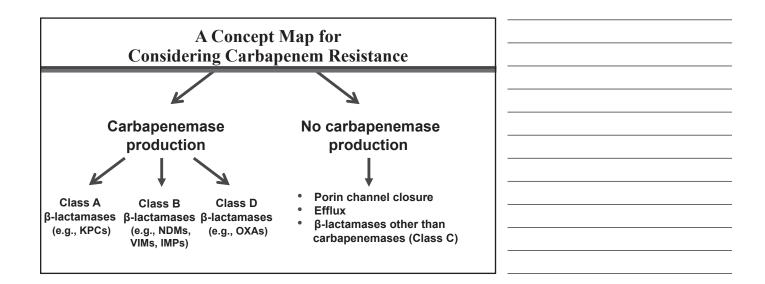
- Outer membrane porins (carbapenems)
- Efflux pumps (fluoroquinolones; meropenem)
- AmpC β-lactamases (non-carbapenem β-lactams)

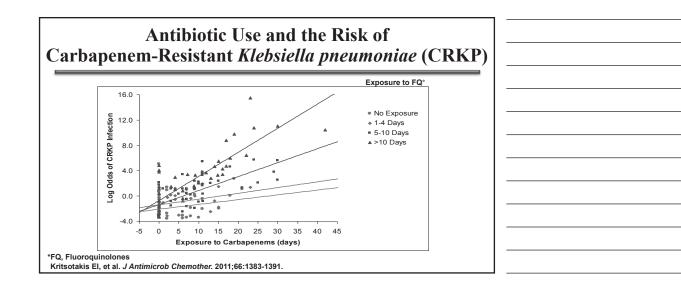
Lister PD, Wolter DJ. Clin Infect Dis. 2005;40:S105-S114. Quale J, et al. Antimicrob Agents Chemother. 2006;50:1633-1641.

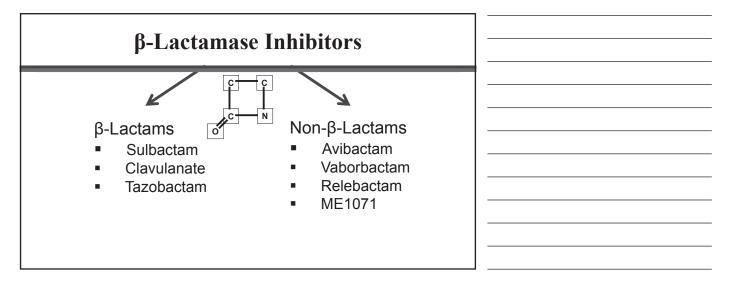
Efflux Pumps in *Pseudomonas aeruginosa*: **Agents Subject To Extrusion By These Pumps**


MexAB-OprM*	MexCD-OprJ	MexEF-OprN	MexXY-OprM
Fluoroquinolones Tetracycline Chloramphenicol Piperacillin Cefepime Aztreonam Meropenem Doripenem ^{**}	Fluoroquinolones Piperacillin Cefepime Meropenem	Fluoroquinolones Trimethoprim Chloramphenicol	Fluoroquinolones Aminoglycosides Piperacillin Cefepime Meropenem Tigecycline [‡]

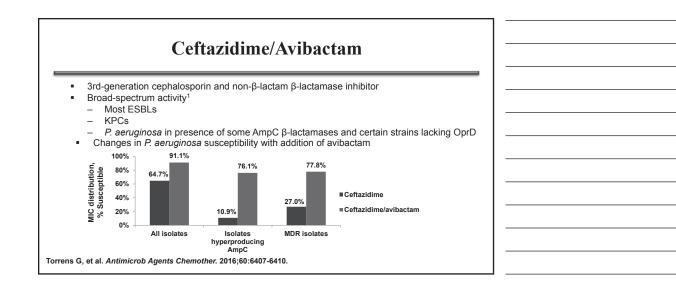
*Constitutively expressed in virtually all isolates Quale J, et al. Antimicrob Agents Chemother. 2006;50:1633-1641. *Dalhoff A, et al. Biochem Pharmacol. 2006;71:1085-1095. *Dean CR, et al. Antimicrob Agents Chemother. 2003;47:972-978.


Mechanisms Contributing to the Expression of Carbapenem Resistance in P. aeruginosa


- Selection by carbapenems of porin-deficient mutants
- Selection by fluoroquinolones of mexEF-oprN-overexpressing mutant strains of Pseudomonas aeruginosa with
 - (1) upregulated efflux pumps
 - (2) closed porin channels


Lister PD, Wolter DJ. Clin Infect Dis. 2005;40:S105-S114. Livermore DM. Clin Infect Dis. 2002;34:634-640.

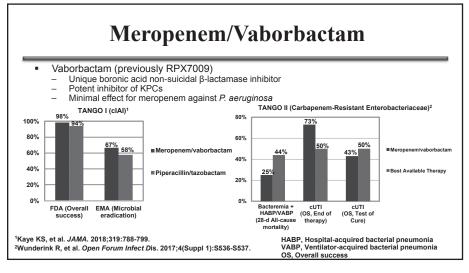
Treatment for Resistant Pseudomonas aeruginosa Comparison of in vitro inhibitory activity of ceftazidime/avibactam and ceftolozane/tazobactam against 290 meropenem-nonsusceptible Pseudomonas aeruginosa non-duplicate clinical isolates from 34 U.S. hospitals Significantly higher inhibitory activity of ceftolozane/tazobactam versus ceftazidime/avibactam Height of inhibitory activity of ceftolozane/tazobactam sustained when the site of origin (respiratory, blood, or wound) and nonsusceptibility to other β-lactam antimicrobials considered Exclusive presence of the VIM metallo-β-lactamase among only 4% of the subset of . isolates nonsusceptible to ceftazidime/avibactam, ceftolozane/tazobactam, or both Conclusion: "These findings suggest an important role for both ceftazidime/avibactam and ceftolozane/tazobactam against carbapenem-nonsusceptible Pseudomonas aeruginosa." Grupper M, et al. Antimicrob Agents Chemother. 2017;61:e00875-17.



Activity of β-lactamase Inhibitors Against β-lactamases

		β-lactamase Inhibitor						
Spectrum	Tazobactam	Avibactam	Vaborbactam	Relebactam				
Class A narrow-spectrum	+	+	+	+				
Class A ESBLs	+	+	+	+				
Class A carbapenemases (KPC)		+	+	+				
Class B metallo-β-lactamases								
Some class C enzymes	+/-	+	+	+				
Some class D enzymes		+						

Toussaint KA, Gallagher JC. Ann Pharmacother. 2010;14:160-201.


Ceftazidime/Avibactam **Emergence of Resistance Among Enterobacteriaceae** First clinical case of a ceftazidime/avibactam-resistant Klebsiella pneumoniae in a patient with no previous exposure¹ Resistance due to porin mutations and the increased expression of KPC-3²

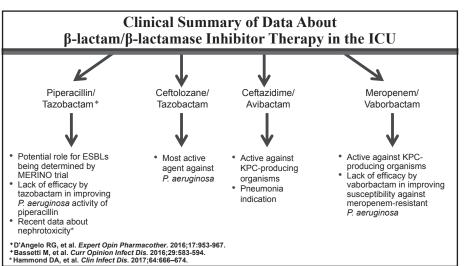
- 37 CRE-infected patients treated with ceftazidime/avibactam³
 - Clinical success was 59% (22/37) and 30-day survival was 76% (28/37) CRE infections recurred within 90 days in 23% (5/22)

 - Resistance detected in 30% (3/10) of microbiologic failures
 - Development of resistance conferring bla KPC-3 mutations in Klebsiella pneumoniae _ within 10 to 19 days of ceftazidime/avibactam exposure, but may be ameliorated if carbapenem susceptibility is restored⁴
- Surveillance studies continue to document low frequency of ceftazidime/avibactam resistance among Enterobacteriaceae isolates carrying bla KPC 5,6

¹Humphries RM, et al. *Antimicrob Agents Chemother*. 2015;59: 6605-6607. ²Nelson K et al. *Antimicrob Agents Chemother* 2017;61(10):e00989-17. ³Shields RK, et al. *Clin Infect Dis*. 2016; 63:1615-1618.

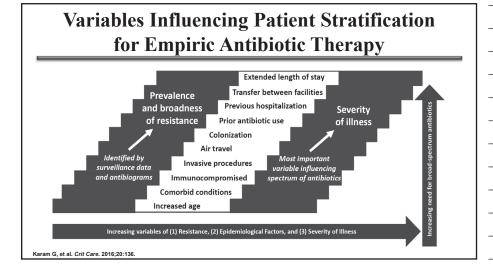
⁴Shields RK, et al. Antimicrob Agents Chemother. 2017;61(3): e02097-16. ⁶Castanheira M, et al. Antimicrob Agents Chemother. 2017;61(3): e01369-16. ⁶Spellberg B, Bonomo RA. Clin Infect Dis. 2016;63:1619-1621.

Against <i>Ps</i> 4,500 isolates from 11 hospitals in E	Brooklyn and		3	2014 ¹		
Species (n)	(n) Meropenem			Meropenem/Vaborbactam		
Species (ii)	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀		
Klebsiella pneumoniae (KPC+) (121)	8	64	0.03 / 8	0.5 / 8		
Pseudomonas aeruginosa (96)	8	32	8/8	32 / 8		
Acinetobacter baumannii (98)	32	64	32 / 8	64 / 8		
4,000 isolates from 11 hospitals in	Brooklyn and	Queens, N	IY: Nov 2013 to Ja	n 2014 ²		
		Queens, N enem	IY: Nov 2013 to Ja Imipenem/R			
4,000 isolates from 11 hospitals in Species (n)						
	Imip	enem	Imipenem/R	elebactam		
Species (n)	Imip MIC ₅₀	enem MIC ₉₀	Imipenem/R MIC ₅₀	elebactam MIC ₉₀		

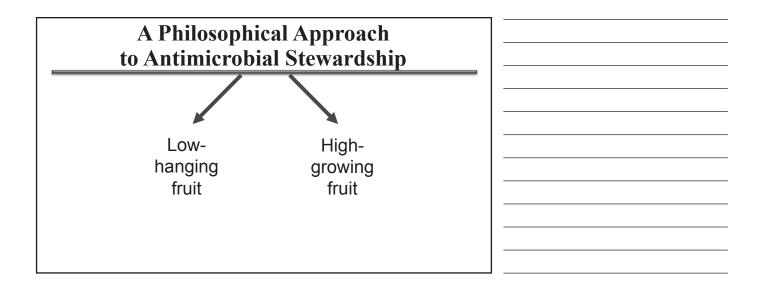


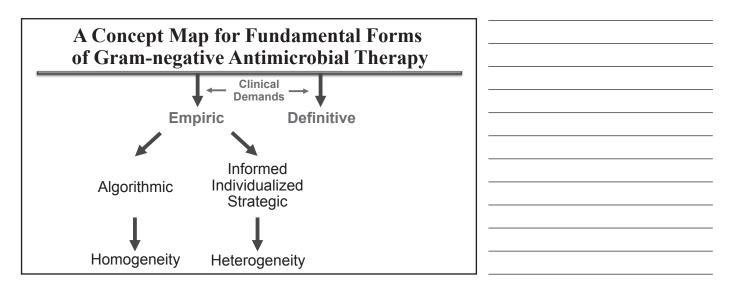
The Clinical Response of "Colistin-Sparing"


(facilitated by data suggesting that newer agents might be better for CRE infections)


- Ceftazidime/avibactam
 - Higher rates of clinical success (P=0.006) and survival (P=0.01) and less nephrotoxicity than aminoglycoside- and colistin-containing regimens against carbapenem-resistant Klebsiella
 - 23% reduced risk for death and 64% probability of better outcome compared to colistin for carbapenem-resistant Enterobacteriaceae (CRE)²
- Meropenem/vaborbactam³
 TANGO-2, comparing meropenem/vaborbactam monotherapy to best available therapy in serious infections due to carbapenem-resistant Enterobacteriaceae (CRE) Lower mortality and renal toxicity
- Plazomicin⁴
- CARE Study, comparing plazomicin versus colistin combined with meropenem or tigecycline in patients with infections due to carbapenem-resistant Enterobacteriaceae (CRE) 70.5% relative reduction in all-cause mortality

¹Shields RK, et al. Antimicrob Agents Chemother. 2017;61:e00883-17.
 ²van Duin D, et al. Clin Infect Dis. 2018;66:163-171.
 ³Wunderink R, et al. ^{2nd} ASM-Microbe Meeting 2017, New Orleans, Louisiana. Abstract 1867.
 ⁴Connolly L, et al. 27th ECCMID 2017, Vienna. Abstract OS0250F.


Risk factors for ESBL* Enterobactericeae ¹				OR (95% CI)	P value
Recent hospitalization in past 12 months			5.69 (2.94–10.99)		
Admission from another health care facility			5.61 (1.65-19.08)		0.006
Charlson comorbidity index > 4			3	.80 (1.90–7.59)	0.001
Previous therapy with β-lactams and/or quinolones				.68 (1.96–6.91)	0.001
History of urinary catheterization in past 30 days			3	.52 (1.96–6.91)	0.001
Age >70 years				.20 (1.79–5.70)	0.001
Patient Characteristics for Resistance in P. aeruginosa bacteremia (PAB) ²		R PAB 127	Non-MDR PAB n = 582		P value
Nosocomial infection (%)	ł	85	68		<0.0001
Longer hospital stay (mean days)	ital stay (mean days) 31.83		16.38		<0.0001
Prior antibiotic therapy (%)	8	5.8	53.4 33.8 37.5		<0.0001
Prior steroid therapy (%)	4	1.7			0.03
Bladder catheter (%)	5	3.5			<0.0001
Inappropriate empirical antibiotic (%)	6	2.2		27	<0.0001
Multivariate Analysis of Risk Factors for Isolation Carbapenem-resistant Enterobacteriaceae (CRE) ³		Adjuste rat		95% Confidence Interval	P value
Weighted index comorbidity >3	4.8		85	1.63-14.41	0.004
Immune suppression		3.9	92	1.08-14.28	0.038
Indwelling devices		5.:	21	1.09-24.96	0.39
Any antibiotic exposure		3.4	89	0.71-21.46	0.119



Evolution of What Defines "Low-Hanging Fruit" Projects in Antimicrobial Stewardship

- Goff DA, et al. Clin Infect Dis. 2012;55:587-592.
 - Intravenous-to-oral conversions
 - Batching of intravenous antimicrobials
 - Therapeutic substitutions .
 - Formulary restriction .
- Brink A, van den Berg D. University of Dundee and British Society of Antimicrobial Chemotherapy https://www.futurelearn.com/courses/antimicrobialstewardship/0/steps/7579
 - Obtaining cultures prior to antibiotic prescription •
 - Concurrent use of ≥4 antibiotics
 - Duration of antibiotic therapy
 - >7 days
 - >14 days
 - Concurrent "double coverage"
 - Redundant anaerobic coverage Excess days of empiric Gram-positive and Gram-negative coverage (e.g., HAP)
 - A Tale of Hope and Caution: Update on Gram-negative and Clostridium difficile Infections

